Hourglass SiO2 coating increases the performance of planar patch-clamp.

نویسندگان

  • Thomas Sordel
  • Stéphanie Garnier-Raveaud
  • Fabien Sauter
  • Catherine Pudda
  • Frédérique Marcel
  • Michel De Waard
  • Christophe Arnoult
  • Michel Vivaudou
  • François Chatelain
  • Nathalie Picollet-D'hahan
چکیده

Obtaining high-throughput electrophysiological recordings is an ongoing challenge in ion channel biophysics and drug discovery. One particular area of development is the replacement of glass pipettes with planar devices in order to increase throughput. However, successful patch-clamp recordings depend on a surface coating which ideally should promote and stabilize giga-seal formation. Here, we present data supporting the use of a structured SiO(2) coating to improve the ability of cells to form a "seal" with a planar patch-clamp substrate. The method is based on a correlation study taking into account structure and size of the pores, surface roughness and chip capacitance. The influence of these parameters on the quality of the seal was assessed. Plasma-enhanced chemical vapour deposition (PECVD) of SiO(2) led to an hourglass structure of the pore and a tighter seal than that offered by a flat, thermal SiO(2) surface. The performance of PECVD chips was validated by recording recombinant potassium channels, BK(Ca), expressed in stable HEK-293 cell lines and in inducible CHO cell lines and low conductance IRK1, and endogenous cationic currents from CHO cells. This multiparametric investigation led to the production of improved chips for planar patch-clamp applications which allow electrophysiological recordings from a wide range of cell lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hourglass SiO coating increases the performance of planar patch - clamp 2

Obtaining high-throughput electrophysiology recordings is an ongoing challenge in fundamental ion channel biophysics and drug discovery. One particular area of development is the replacement of glass pipettes with planar devices in order to increase the throughput. However, successful patch-clamp recording depends on an ideal surface coating that promotes and stabilizes giga-seals formation. He...

متن کامل

Hour-glass SiO2 coating increases the performance of planar patch-clamping

Obtaining high-throughput electrophysiology recordings is an ongoing challenge in fundamental ion channel biophysics and drug discovery. One particular area of development is the replacement of glass pipettes with planar devices in order to increase the throughput. However, successful patchclamp recording depends on an ideal surface coating that promotes and stabilizes giga-seals formation. Her...

متن کامل

Structural and optical characterisation of planar waveguides obtained via Sol-Gel

Planar waveguides of SiO2:TiO2 (multilayer structure) and SiO2:CeO2 (thick layer) were prepared onto commercial glass substrates using a sol-gel technique combined with dip-coating. These glassy coatings were structural characterised by Transmission Electron Microscopy (TEM) Energy Dispersive X-ray analysis and by Confocal Microscopy. Thicknesses of 1230 nm and 4,15 μm and refractive indices of...

متن کامل

Batch fabrication of high-performance planar patch-clamp devices in quartz.

We report here on a batch microfabrication approach for producing ultra-smooth, high-aspect ratio structures in silicon dioxide and quartz fi lms, and we apply that method towards the construction of planar-patch clamp electrophysiology devices that, for the fi rst time, achieve the performance metrics of the very best micropipette-based patch-clamp approaches. The patch-clamp method has been a...

متن کامل

The development of high quality seals for silicon patch-clamp chips.

Planar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biotechnology

دوره 125 1  شماره 

صفحات  -

تاریخ انتشار 2006